Cross-cutting recombination metrology for expediting Voc engineering

Y. Yan,¹ C. Swartz,² S. Paul,² S. Sohal,² M. Holtz,² L. Mansfield,³ and J. V. Li²

¹University of Toledo, Toledo, OH, USA

²Texas State University, San Marcos, TX, USA

³National Renewable Energy Laboratory, Golden, CO, USA

PHOTOVOLTAICS RESEARCH AND DEVELOPMENT (PVRD1)

PHOTOVOLTAICS

Overview

Technology Addressed: Topic area 3: Pushing the limits of established PV technologies

Motivation

• Voc engineering is only as good as the metrology employed whereas a metrology is only as good as the metrics it uses. State-of-the-art metrologies use 3^{rd} -level metrics, e.g., saturation current density J_0 and carrier lifetime τ . These single lumped parameters cannot describe the *spatially distributed and non-uniform* recombination in TFPV, which calls for the 4^{th} -level metric of spatially- and type-resolved recombination $R_j(x)$.

Impact

- Advance the state-of-the-art of recombination metrology
- Enable metrology-guided V_{OC} engineering for TFPV
- Catalyze the advancement of Voc and materially improve module performance, manufacturability, and reliability towards the \$0.06/kWh SunShot goal.

Progress

Electrical and optical measurement setup at Texas State University

Voc(T,I) data from a CdTe device

PL(T,I) data from a CdTe device

Technical Approaches

Innovative Aspect

We develop a transformative metrology based on the 4^{th} -level metric – the spatially and type-resolved recombination rate $R_j(x)$. This metrology is built upon joint electrical-optical analysis that simultaneously solves the SRH and radiative recombination.

Future work

Year 1 objectives

Extract $R_{rad}(x)$ and $R_{SRH}(x)$ profiles with:

- spatial resolution dx<50 nm;
- dynamic range R_{SRH,max}/R_{SRH,min}>10 for the approximate scenario in thin-film PV devices;
- calibration with J₀ method to within a factor of 3 in Si devices.

Future Work

•Proposed work is to develop the R_i(x) metrology for TFPV

3) Develop a rapid $R_i(x)$ metrology for module manufacturing

1)Develop a R_i(x) metrology for the approximate scenario for TFPV and validate with Si

2)Develop a $R_j(x)$ metrology for exact-solution scenario and use it to guide Voc improvement for industrial partners

